Meldingen
Alles wissen

Rum wilde gisting

Pagina 2 / 2

Kees22
Berichten: 1266
(@kees22)
Noble Member
Deelgenomen: 6 jaar geleden

Kun je niet gewoon het Engelse artikel of de link ernaartoe posten?

Beantwoorden
Berichten: 579
Topic starter
(@stierke)
Prominent Member
Deelgenomen: 5 jaar geleden

Ik zal een poging  doen.

 

Journal of Applied Microbiology 1998, 84, 921–928
A REVIEW
Microbial flora of rum fermentation media
L. Fahrasmane and B. Ganou-Parfait
I.N.R.A. Station de Technologie des Produits Ve´ge´taux, Pointe a` Pitre cedex, France (F.W.I.)
6171/04/97: received 2 April 1997, revised 17 July 1997 and accepted 31 July 1997
1. Introduction, 921 4.1.2 Molasses, 926
2. Rum technology evolution and microbiology, 921 4.1.3 Dilution waters, 926
3. Yeasts in rum production 4.1.4 Slops, 926
3.1 Evolution of the yeast flora, 923 4.2 Dynamics and control of the bacterial flora,
3.2 Prospects, 924 926
4. Bacterial flora 5. Conclusion, 927
4.1 Origin and nature of the bacterial flora, 924 6. References, 927
4.1.1 Cane juice, 926
—–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1. INTRODUCTION
Rum is the alcoholic beverage made exclusively from sugar
cane (Saccharum officinarum L.) juice and its by-products
(molasses from the manufacture of cane sugar or syrups).
The first stage of rum-making is an alcoholic fermentation of
musts made of raw materials diluted with water. The fermented media are then distilled. The distillates are matured
for a few days up to several years in tanks, wooden vats
or oak casks, before being reduced, by water dilution, to a
commercial alcoholic strength (Fahrasmane etal. 1996).
In rum production, the alcoholic fermentation is performed
through the action of yeasts, traditionally comprising Saccharomyces strains and, depending on the type of rum, Schizosaccharomyces strains. Bacteria that are found mainly in raw
materials (cane juice and molasses as well as dilution waters)
have metabolic activity simultaneously with the ethanolproducing yeast flora during the alcoholic fermentation,
interact with its kinetics and biochemistry and affect the
organoleptic properties of rums (Table1).
The nature and abundance of the bacterial flora depend on
the sanitary status of the raw material and the must
components.
The bacteriostatic or sterilizing thermal treatment of must
components and the acidification of the media, as well as the
use of antibiotics and fermentation yeasts, make it possible to
control the bacterial flora, which produces aromatic
compounds. Some of these compounds (acrylic acid, acrolein,
Correspondence to: Louis Fahrasmane, I.N.R.A. Station de Technologie des
Produits Ve´ge´taux BP 515, 97165 Pointe a` Pitre cedex, France.
© 1998 The Society for Applied Microbiology
etc.) may be detrimental to the organoleptic properties of the
rum and be a source of unwanted specific toxicity.
Rum fermentation media containing yeast and bacterial
flora of the ‘wild’ type are natural ecosystems giving rise to
flavours in the rum, so that it possesses distinctive features
linked to the local natural environment.
In the present study carried out on Guadeloupe, Martinique and Haiti, a list was established of the microbial flora
of molasses or cane sugar-based fermentation media, while the
dynamics of the bacterial population during the fermentation
922 L. FAHRASMANE AND B. GANOU-PARFAIT
Table 1 Features of the four main types of rum
—––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Rhum agricole Rhum industriel Heavy-flavour rum Light-flavour rum
—––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Raw materials Sugar cane juice Molasses Molasses Molasses
NA ×225 ×225 ×800 ³225
(Ester ×500)
Distillation type Simple, continuous column Simple, continuous column Simple, continuous column Rectification, multistage
column
Fermentation type Mixed Mixed Mixed Pure
Microbial flora Bacteria, Saccharomyces Bacteria, Saccharomyces Bacteria, Schizosaccharomyces Saccharomyces
—––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
NA, non-alcohol (volatile compounds other than ethanol); values are in g hl−1 pure alcohol.
In those days, musts, rum fermentation media, were generally composed of 10–15% molasses by volume, 40–70%
stillage, the residuary liquor from distillation otherwise
named slop or spent wash, and water. Under these conditions,
‘wild’ fermentation is able to start spontaneously; microorganisms show good resistance to previous handling during
the manufacture of sugar (heating, clarification, etc.) and to
competitors brought in with the wooden vats used for molasses fermentation but not cleaned out after previous operations. They arise in composition ponds and then become
active during fermentation. Nowadays, ‘rhum industriel’
(made from molasses) results from the evolution of this kind
of production.
Towards the middle of the 19th century, another system of
rum production was developed in which the source of sugar
was no longer molasses, but raw or boiled sugar cane juice as
well as syrups. In fact, syrup was probably used as far back
as the 18th century. This system originated from the slump
in the sugar market and marked the beginning of ‘rhum
agricole’ (made from sugar cane juice) production on plantations that were independent of sugar-manufacturers. The
percentage of stillage in the must composition was lower (10–
30%) than in molasses-based rum production. The fermentation flora was of the ‘wild’ type with elliptical yeast
strains.
The composition and therefore the flora of rum fermentation media changed in the course of time in relation to
technical and economic factors, control of water resources
and increasing experience in microbiology. These changes in
production processes, just as the move from still to column
distillation during the 19th century, modified the composition
and the organoleptic properties of rums.
Four types of rum are determined by raw materials, microbiology of the fermentation media and distillation. They are
as follows (Table1): ‘rhum agricole’; ‘rhum industriel’; lightflavour rum and heavy-flavour rum.
The physico-chemical conditions of the media have always
largely determined the microbiology and the course of the
© 1998 The Society for Applied Microbiology, Journal of Applied Microbiology 84, 921–928
fermentation process; acidity and non-sugar components are
of primary importance in the ‘wildness’ of fermentation
involving Schizosaccharomyces, while the non-sugar content
has a considerable effect on the yield of the sugar–alcohol
transformation; temperature (26–35°C) has a substantial
influence on the nature and importance of bacterial flora
metabolites. These factors contribute to rum characteristics.
In addition to the microbial aspects, the yield of the sugar–
alcohol transformation has a large variability both in rum and
bioethanol production. The sugar content of the musts is
generally about 100g l−1
, while the fermentation cycle ranges
from 18 to 40h. In 1917, Magne showed that the considerable
variations in yield for molasses were related to yeasting conditions: pure yeast 85–95% of Pasteur yield; yeast with antiseptic 70–85%; pressed yeast 50–75% and ‘wild’
fermentation 40–60%.
During the treatment of sugar cane stalks in distilleries,
nearly half of all the losses of yield of alcohol occurs during
the fermentation stage (Table2).
Table 2 Losses at different stages of the process in the rum
distillery as percent of ethanol equivalent
—–––––––––––––––––––––––––––––––––––––––––––––––––––––
Losses
—––––––––––––––––––––––––––––––––
Ethanol Rum
production production
Operation in Brazil* in F.W.I.†
—–––––––––––––––––––––––––––––––––––––––––––––––––––––
Extraction/crushing 6·0 9·0
Clarification 2·0 —
Fermentation 10·0 12·5
Distillation 3·0 0·9
Others — 2·0
—–––––––––––––––––––––––––––––––––––––––––––––––––––––
*According to Ebeling (1989).
†Means for 39 samples from 13 cottage distilleries in the French
West Indies (F.W.I.).
RUM FERMENTATION MICROBIAL FLORA 923
Measurements of the sugar–alcohol yield in fermentation
media containing molasses, syrup or cane juice in a given
rum distillery indicate that the variations depend on the raw
material used (Destruhautetal. 1985): Gay-Lussac yield, 0·64
l of pure alcohol (lPA) kg−1 glucose; Pasteur yield, 0·61
lPA kg−1 glucose; theoretical maximal yield, 0·59 lPA kg−1
glucose (97% of Pasteur yield); yield on molasses, 0·52 lPA
kg−1 glucose (85% of Pasteur yield); yield on cane juice, 0·47
lPA kg−1 glucose (77% of Pasteur yield); yield on syrup, 0·40
lPA kg−1 glucose (66% of Pasteur yield).
In Brazil, the average yield is 0·53 lPA kg−1 glucose in
bioethanol produced from cane juice and enriched by the
addition of concentrate or molasses (Ebeling 1989) (Table2).
From sugar beet, in the same ethanol production system,
Allar and de Miniac (1985) obtained yields of 0·59 and 0·60
with molasses using condensed recycling and with waste
water involving slop recycling, respectively.
These figures indicate that, being higher in molasses, the
non-sugar component in raw materials is a nutrient source as
well as a factor affecting fermentation yield. A significant
improvement in rum yields is also possible.
The spectra of short-chain fatty acids of rums show a
particular pattern, both in terms of quality as well as quantity,
resulting from the bacterial activity in fermentation media;
these compounds contribute to the formation of esters. Propionic, butyric and valeric acid levels are particularly high in
rums compared with other spirits (Suomalainen 1975).
Propenoic acid indicates an intense bacterial activity (Fahrasmane etal. 1983). Formic acid can provide information on
the conditions of rum production and also contribute to
quality evaluation; an increase in formic acid content often
reveals bacterial problems (Jouret etal. 1990).
3. YEASTS IN RUM PRODUCTION
Greg (1895) in Jamaica and Pairault (1903) in the French
West Indies, especially in Martinique, followed by Allan
(1906) and Ashby (1909) in Jamaica and then Kayser (1917)
in the French West Indies were among the few researchers
in a position to observe that Schizosaccharomyces strains are
the only alcoholic yeasts to develop in molasses- and slopbased fermentation media in which acidity is due to the
addition of slops. The osmotic pressure is prejudicial to the
activity of elliptic yeasts. The latter yeasts (Saccharomyces,
Torula, Zygosaccharomyces, etc.) are active in media in which
the slop content is low or replaced by water.
3.1 Evolution of the yeast flora
Bryan Higgins, an Irish naturalist, was the first to study rum
production in Jamaica in a scientific way. His work (1799–
1803) is considered as a classic reference. About 100 years
later, in Jamaica, the Englishman Greg (1895), who studied
© 1998 The Society for Applied Microbiology, Journal of Applied Microbiology 84, 921–928
microbiology with the Danish workers Hansen and Jorgensen, published several articles on the subject. At the beginning
of the 20thcentury, in Martinique, Pairault (1903), the head
chemist of the French colonial army, came to the conclusion
that ‘wild’ yeast should imperatively be replaced by pure
fermentations. Kayser, the director of the fermentation laboratory at the Institut Pasteur in Paris, carried out a detailed
survey of rum yeasts in 1913. As a result, he advocated pure
fermentation with selected yeasts. These researchers, who
thought that the bacterial flora adversely influenced rum
fermentation, were especially concerned with improving productivity. On the contrary, two chemists who studied rum
production in Jamaica (Allan 1905; Ashby 1907) agreed on
the leading role of bacteria in the aroma development of
heavy-flavour rums.
After 1918, some distillers in the French West Indies who
wanted to increase the alcoholic yield decided to put into
practice the advice of Pairault and Kayser on pure fermentations. Although the result was an increase in yields, the
quality of these products evidently fell because of their
increased chemical neutrality. Rocques (1927) was commissioned by the French Ministry of Agriculture to carry out
a study which concluded that ‘rums produced from pure and
rapid fermentations are characterized by low levels of acid
and ester as well as relatively high contents in the higher
alcohols’.
Most rum producers subsequently gave up the use of
selected yeasts and decided that ‘wild’ fermentations gave the
best results, by producing rums with richer flavour.
Arroyo (1945), working in Puerto Rico, thought that controversies about the seeding of fermentation media and the role
of bacteria in rum production were due to misunderstandings
and over-hasty generalizations. Indeed, production targets in
organoleptic properties seemed not to have been taken into
account in choosing the correct moment for modification of
the fermentation stage. Therefore, this scientist considered
that some bacterial species, which can be found to a certain
extent according to the kind of rum produced, increased the
volume and the persistence of the aroma.
Kervegant (1946) wrote an account of the history and state
of the art in this field in his 500-page book entitled Rhums et
eaux-de-vie de canne.
In the 1970s in the French West Indies, operators attempting to control fermentation risks (cessation, prolongation and
acidification) decided to use dried baker’s yeast—a cheap
and easily available commodity—as a booster to alcoholic
fermentation. Moreover, production was moving towards
lighter products to meet the market demand and, as a result,
slops were no longer used in must composition.
According to a classification of ‘wild’ yeasts drawn up by
Parfait and Sabin (1975) (Table3), Schizosaccharomyces yeasts
can only be found in the fermentation media used in heavyflavour rum production. Saccharomyces are alcoholic agents
924 L. FAHRASMANE AND B. GANOU-PARFAIT
Table 3 Occurrence of yeast strains in the raw material, must
and stillage in 26 samples (10 from plant using molasses and
16 using cane juice)
—–––––––––––––––––––––––––––––––––––––––––––––––––––––
Raw
Isolated yeasts material Must Stillage
—–––––––––––––––––––––––––––––––––––––––––––––––––––––
Saccharomyces cerevisiae 10 19 15
Saccharomyces chevalieri 3 54
Saccharomyces rouxii 1 11
Saccharomyces aceti 1 53
Saccharomyces microellipsodes 1
Saccharomyces delbruckii 1
Saccharomyces carlsbergensis 2 1
Schizosaccharomyces pombe 1 1
Pichia membranaefaciens 1
Hansenula anomala 2 22
Hansenula minuta 1
Candida krusei 1 2
Candida pseudotropicalis 1
Candida tropicalis 1
Torulopsis candida 2
Torulopsis globusa 3 1
Torulopsis glabrata 4 23
Torulopsis stellata 1 1
—–––––––––––––––––––––––––––––––––––––––––––––––––––––
From Parfait and Sabin (1975). Identifications according to
Lodder (1970).
in ‘wild’ fermentation media as well as seeded media in which
the slop content is low or, as in most cases, not used.
An inquiry carried out in the early 1970s into Haitian
distilleries, where fermentations were obtained from cane
juice diluted with stillage, showed that Schizosaccharomyces
were found as the alcoholic fermentation yeast (Fahrasmane
etal. 1988). Three species were identified from 60 samples.
Under Lodder’s nomenclature, they were classified as follows: Schizosaccharomyces pombe LINDNER (55 samples); S.
malidevorans RANKINE and FORNACHON (four samples)
and S. japonicus YAKAWA and MAKI (one sample).
After a more recent classification by Barnett etal. (1990),
S. pombe and S. malidevorans are considered as the same
species, i.e. S. pombe. Schizosaccharomyces japonicus has been
renamed as Hasegawea japonica YAMADA and BANNO.
The latter yeast species has a low fermenting capacity and
relatively slow kinetics compared with the other Schizosacharomyces species tested in the laboratory.
As early as 1945, Arroyo pointed out that economic necessities such as production standardization would lead to fermentation control through selected yeasts.
3.2 Prospects
The selection of rum yeasts from ‘wild’ strains of sugar canebased media is now under way at our laboratory. We are
© 1998 The Society for Applied Microbiology, Journal of Applied Microbiology 84, 921–928
currently developing protocols for the use of these strains.
One of our strains has the characteristic of high temperature
resistance (36°C). Among our comparative works for rum
yeast selection, the best results were obtained with a local
strain. The world’s first selected rum yeast from our collection, a Saccharomyces cerevisiae var. cerevisiae, is marketed by
Lallemand Inc. under the appellation Danstill 493 EDV.
Attempts are being made to define the characteristics of a
‘fermenting’ cane that is better adapted to the distillery objectives than sugar cane and its by-products.
The search for new means of nutritional supplementation
of fermentation media to improve yield and productivity,
such as sterols from clarifying mud (Bourgeois and Fahrasmane 1988) and the selection of yeasts adapted to sugar
cane-based media, is essential in order to improve the fermentation.
Yield improvement in rum production should take account
of the fact that aroma gives the rums their organoleptic
characteristics, which are mainly developed by the bacteria
in aromatic rum production.
4. BACTERIAL FLORA
The fermentation media contain a bacterial flora whose nature
depends on the raw materials used and the environment;
the bacterial count is related to the healthiness of the must
components. Some substances, produced by bacteria that
essentially acidify the media, may sometimes disturb the
alcoholic fermentation and are detrimental to the organoleptic
properties of the end-product.
Along with the bacteria that are significant from a technological point of view (see Table4), a minor flora of common
forms is also present (Enterobacteria, Streptococcus, Pseudomonas, etc.) (Ganou-Parfait etal. 1989) as well as sulphatereducing bacteria (SRB). Until now, few studies have been
made on these bacteria.
Bacterial metabolites have been proposed as markers for
rums and as discriminants between ‘rhums industriels’ and
‘rhums agricoles’. Alkylpyrazines, which are components of
molasses, appear to be of interest in distinguishing ‘rhums
blancs agricoles’ from molasses-based rums (Jouret etal.
1994).
4.1 Origin and nature of the bacterial flora
In the French West Indies, the fermentation of molasses- and
cane juice-based media traditionally occurs without further
protection other than acidification of musts at pH4·5 by the
addition of sulphuric acid. This acid treatment has progressively replaced slop addition since the beginning of the
century.
RUM FERMENTATION MICROBIAL FLORA 925
Table 4 Significant bacteria in rum technology
Optimum Optimum
Type Genus Species Origin Presence temp. pH Technological features Effect
− Effect
¦
Aerobic Micrococcus luteus Worm-eaten cane Start F 37 °C 6·5 Acrylate, propenol propanol Acrylate
bacteria varians Worm-eaten cane cycle 37 °C 6·5 production. Ethanol-resistant Propenal
Bacillus cereus Rodent-eaten cane Start and 37 °C 6·3
subtilis Rodent-eaten cane end 37 °C 6·3 Ferment lactate in volatile Acrylate Aldehyde
megaterium Rodent-eaten cane F 37 °C 6·3 fatty acids Propenal Butanediol
sphaericus Rodent-eaten cane cycle 37 °C 6·3
Brevibacterium incertae sedis Sugar cane stalk 30 °C 6·5
Corynebacterium incertae sedis Sugar cane stalk Musts 37 °C 6·5 Metabolize glycerol and Propenol
Erysipelothrix Sugar cane stalk and 30 °C 6·5 higher alcohols. Acrolein
Kurthia zopfli Worm-eaten cane fermented 30 °C 6·5 Ethanol-resistant Acidity
Listeria Rodent-eaten cane media 37 °C 6·0
Microbacterium lacticum Sugar cane stalk 37 °C 6·5
Microaerophilic Propionibacterium acidipropionici Sugar cane stalk During F Rum
bacteria jensenii Molasses cycle 37 °C 6·5 Produce priopionic acid characteristics
freudenreichii
Lactobacillus fermentum Sugar cane stalk 30–40 °C 6·0 Acidity
fructivorans Molasses During 30–40 °C 6·0 Significant growth at pH 3·2 Propenol Aldehyde
hilgardii Water F 30–40 °C 6·0 Acidifying Yield Ester and
viridescens cycle 30–40 °C 6·0 Propenal precursors
Leuconostoc mesenteroides Sugar cane stalk 30 °C 6·5 Sugar changed into dextrane Propenol
paramesenteroides Molasses 30 °C 6·5 Acidifying Yield
Anaerobic Clostridium butyricum
bacteria beijerinckii Higher alcohols production
acetobutylicum from sugars
felsineum Soils At the Sugar consumption
puniceum Waters end of F 37 °C 6·5 Production of propionic acid Acrylate Ester
thermosulfurigenes cycle from glycerol and lactate precursors
thermohydrosulfuricum Formic acid production
sporogenes Butyric acid production
bifermentans
F, Fermentation; Effect
¦, positive effect on rum organoleptic properties; Effect
−, negative effect on rum organoleptic properties and yield.
Taxonomic references according to Bergey’s Manual, 8th edn.
© 1998 The Society for Applied Microbiology, Journal of Applied Microbiology 84, 921–928
926 L. FAHRASMANE AND B. GANOU-PARFAIT
4.1.1 Cane juice. During a fermentation cycle, an aerobic
microflora first appears in musts, coming partly from the
waters used for dilution and from the equipment. It is composed of corynebacteria, Micrococcus species, enterobacteria
and Bacillus species. Secondly, during the active phase of
alcoholic fermentation, yeasts and microaerophilic bacteria
appear, including Lactobacillus, Propionibacterium and Leuconostoc species (Ganou-Parfait etal. 1989; Ganou-Parfait and
Saint-Marc 1994) (Table4).
The qualitative and quantitative composition of the bacterial flora is related to the phytosanitary condition of the
sugar cane. Juices extracted from sound and fresh sugar cane
contain a flora with a predominance of lactic bacteria.
The crushing of unsound cane stalks significantly increases
the bacterial count in the must up to 109 cfu ml−1
.
4.1.2 Molasses. In the course of sugar production, the greater
part of the non-sporulated bacterial flora is destroyed. As a
result, molasses are generally less contaminated than cane
juice (102
–103 bacteria g−1
). However, some aerobic and
anaerobic sporulated bacteria remain. Lactobacillus and Propionibacterium species develop especially in molasses-based
musts (Ganou-Parfait and Saint-Marc 1994).
4.1.3 Dilution waters. The bacteria from dilution waters are
added to those coming from cane juice and molasses. A
specific feature of these waters is the existence of anaerotolerant pathogens such as coliforms, faecal Streptococcus and
Clostridium species and SRB, which are for the most part
inhibited by the ethanol produced during alcoholic fermentation.
The mineral content depends on the water used (well or
surface water). We observed that the water’s mineral level
appeared to be related to the bacterial populations. Waters
containing high concentrations of mineral matter are the most
contaminated by bacteria (Ganou-Parfait etal. 1991).
4.1.4 Slops. Slops are used to dilute molasses for the production of heavy-flavour rums. Since they are stored between
their production and their use, they are exposed to bacterial
acidification, and thereby acidify the fermentation media and
seed it with an abundant anaerobic bacterial flora.
4.2 Dynamics and control of the bacterial flora
During the fermentation cycle, different respiratory types
appear. They are determined by the media conditions, but in
a more significant way with cane juices than with molasses.
Aerobic bacteria are particularly active at the beginning during the filling of the vats, a procedure that can take between
3 and 6 h in small plants; microaerophiles and anaerobic
© 1998 The Society for Applied Microbiology, Journal of Applied Microbiology 84, 921–928
bacteria then appear owing to the increasing activity of
alcoholic fermentation yeasts.
In cane juice-based media, the aerobic flora at the beginning of fermentation is composed of Micrococcus species (101
cfu ml−1
), Bacillus species (102 cfu ml−1
) and coryneforms
(105 cfu ml−1
), some of these forms being related to reduction
in the healthiness of the raw materials (Listeria from wormeaten canes and Kurthia from rodent-eaten canes). In
addition, there are some common bacteria such as enterobacteria and Streptococcus species, etc. Almost all of these
bacteria produce undesirable substances such as acrylic acid,
acrolein and allylic (Ganou-Parfait etal. 1987; Lencrerot etal.
1984; Ganou-Parfait etal. 1988). In the active fermentation
phase, lactic bacteria are developed (105
–106 cfu ml−1
), as
well as Propionibacterium species (104 cfu ml−1
), Clostridium
species (103 cfu ml−1
) and Leuconostoc species (102 cfu ml−1
).
The Leuconostoc count increases when using canes from
fields that are burnt before harvest to make cutting easier
(Picard and Torribio 1972).
The flora of the molasses-based media is chiefly composed
of lactic bacteria (105
–106 cfu ml−1
) and propionibacteria (105
cfu ml−1
); in some cases Leuconostoc species can also be found
(104 cfu ml−1
) depending on the quality of the molasses. The
aerobic flora is rather inactive because of the low contamination of molasses by aerobic micro-organisms and the
vats’ filling-time which is generally shorter than with cane
juice (1–3h).
The lowering of pH by addition of sulphuric acid is not
the only way to regulate the aerobic bacterial flora. The
control can be improved firstly by shortening the filling phase
and, secondly, by seeding the media with yeasts, so that the
fermentation phase can be started rapidly. It is also possible
to use mother vats, which enable seeding with yeasts in good
physiological condition. Thus, the production of detrimental
substances can be limited. The initial sugar contents of musts
in rum production are under 100g l−1
, while the fermentation
is rapid and lasts from 18 to 36h. In terms of time and sugar
consumption, the aerobic phase represents 10–20% of the
fermentation cycle. The conditions under which the fermentation starts may partly explain the considerable yield
losses at the fermentation stage.
It appears that the microaerophilic, Lactobacillus species
and Propionibacterium species flora is the most significant in
rum production media when the bacteriological quality of the
raw materials and of the water is good and when the aerobic
phase is shortened. The Lactobacillus species flora consumes
sugar and has an acidifying effect since it produces acids
(lactic, acetic and formic) that can be esterified. This flora
also produces 2-3 butanediol and diacetyl (Jay 1982). To
a certain extent, these compounds and their by-products
positively contribute to the development of the organoleptic
properties of rum (Peynaud and Lafon 1951). The Propionibacterium species flora, owing to its special property of
RUM FERMENTATION MICROBIAL FLORA 927
producing propionic acid, distinguishes rum from other spirits by leading to relatively high concentrations of this acid
(Suomalainen 1975; Jounela-Eriksson 1979). The type of raw
material and the microaerophilic bacteria mentioned above
are more important than the fermentation yeast in making
aromatic rums a local product. Nevertheless, selected yeast
should not be neglected since its use under optimum conditions enables good fermentation yields and increased productivity.
Other kinds of bacteria are only significant under certain
conditions that are detrimental to the development of fermentation and the quality of the product. For instance,when
there is a sanitary degradation of must components leading
to an increase in the bacterial count up to 109 cfu ml−1
(Ganou-Parfait and Saint-Marc 1994), the result is a considerable and excessive acidification of the distillery products
as well as an off-flavour increase (Fahrasmane etal. 1983;
Lencrerot etal. 1984); at the same time, the yeast is inhibited
by lactic and acetic acid and by bacteriocins (Essia Ngang
etal. 1989, 1990). If the musts are insufficiently acidified,
thus promoting bacterial development, their optimum growth
varies from 6·0 to 6·5 (Table4); the consequences are the
same as those mentioned above. If the vats are overheated
above 37°C, which is the optimum temperature for the
growth of many of the bacteria, the yeast is inhibited and
fermentation consequently comes to an arrest (Arroyo 1945;
Merrit 1966; Lonvaud-Funel 1988).
5. CONCLUSION
The key factors for bacterial control include acidification of
the musts, temperature control and the use of selected yeasts.
The latter provides an active fermentation with a reduced
latency time, giving rise to a positive bacterial effect on the
quality and authenticity of the products.
Heavy-flavour rum is an aromatic quintessence produced
from media containing a ‘wild’ local flora; the expression of
its bacterial component is quite extraordinary. On the other
hand, light-flavour rums—in which the bacterial count and
activity are minimized—are related to rums mainly because
of the raw materials used. The ‘rhums traditionnels’ of the
French West Indies arise from a combination of raw materials,
native and/or selected yeasts and native bacteria; the products’ aromas are intermediate between the extremes of lightflavour rum and heavy-flavour rum. Thus, nowadays ‘rhums
traditionnels’ are modern counterparts of the local archetypal
products made before the 20th century that have benefited
from the progress in microbiology.
Sugar cane and its by-products have always been used in
rum production; European regulations have given recognition
to this fact (O.J. of the European Communities 1989). The
diversity of production processes has led to several types of
rums in which local bacterial flora is a key factor. Lactobacillus
© 1998 The Society for Applied Microbiology, Journal of Applied Microbiology 84, 921–928
and Propionibacterium species are the most important genera
in the context of a controlled technology.
Alcoholic fermentation yeasts added according to defined
technical stages have optimized efficiency. Above all, yeast is
a technological efficiency factor. However, the yeast also plays
a role in the synthesis of the components and the precursors
of aroma. For example, the synthesis of volatile fatty acids is
modulated, according to the strain, by the citric acid concentration in the raw material (Fahrasmane etal. 1985).
The production of aromatic rums in which ethanol is a
carrier-solvent for flavour-giving molecules enables this spirit
to be used rather like an aromatic resource.
There are several ways of consuming and using colourless
(white) or matured rums. The volume of rum sold in France
in 1992 (75000 hectolitres pure alcohol) is higher than that
of Cognac, Armagnac brandy and Cider brandy together.
Aromatic rum from the French West Indies is a choice
ingredient for cooking with respect to its flavouring properties.
The current state of technological and chemical knowledge
on rums points to the important role of the bacterial flora as
far as the aromatic product composition is concerned (acids
and esters, etc.).
In the future, the use of sensorial analysis, in addition to
physico-chemical methods and leading on from microbiological research, will make it possible to estimate the correct limits of the bacterial expression needed to make highquality aromatic products.
6. REFERENCES
Allan, Ch. (1906) Report on manufacture of Jamaica. West Indian
Bulletin 7, 141–142.
Allar, G. and de Miniac, M. (1985) Recyclage des vinasses ou de
leurs condensats d’e´vaporation en fermentation alcoolique des
produits sucriers lourds (Me´lasses et e´gouts). Industries Alimentaires et Agricoles 102, 877–882.
Arroyo, R. (1945) Studies on Rum. Research bulletin no. 5. Agricultural Experimentation Station, University of Puerto Rico.
Ashby, S.F. (1909) Studies of fermentation in manufacture of
Jamaica rum. International Sugar Journal 11, 243–251, 300–307.
Barnett, J.A., Payne, R.W. and Yarrow, D. (1990) Yeasts Characteristics and Identification 2nd edn. Cambridge: Cambridge University Press.
Bourgeois, P. and Fahrasmane, L. (1988) Effet de ste´roı¨des de la
canne a` sucre sur des levures de fermentation alcoolique. Canadian Institute of Food Sciences Technology Journal 25, 555–557.
Destruhaut, C., Fahrasmane, L. and Parfait, A. (1986) Technologie
rhumie`re. Etude des rhums de sirop. Rapport de convention
I.N.R.A.
Ebeling, C. (1989) New technological advances in Brazilian ethanol
production. Zuckerindustrie 114, 17–24.
Essia Ngang, J.J., Letourneau, F. and Villa, P. (1989) Alcoholic
fermentation of beet molasses: effect of lactic acid on yeast fer-
928 L. FAHRASMANE AND B. GANOU-PARFAIT
mentation parameters. Applied Microbiology Biotechnology 31,
125–128.
Essia Ngang, J.J., Letourneau, F., Wolnieritz, E. and Villa, P. (1990)
Inhibition of beet molasses alcoholic fermentation by Lactobacilli.
Applied Microbiology Biotechnology 33, 490–493.
Fahrasmane, L., Parfait, A., Jouret, C. and Galzy, P. (1983) Etude
de l’acidite´ volatile des rhums des Antilles-franc¸aises. Industries
Alimentaires et Agricoles 100, 197–201.
Fahrasmane, L., Parfait, A., Jouret, C. and Galzy, P. (1985) Production of higher alcohols and short chain fatty acids by different
yeasts used in rum fermentation. Journal of Food Sciences 50,
1427–1430, 1436.
Fahrasmane, L., Ganou-Parfait, B. and Parfait, A. (1988) Yeast flora
of Haitian rum distilleries. Mircen Journal 4, 239–241.
Fahrasmane, L., Ganou-Parfait, B., Bazile, F. and Bourgeois, P.
(1996) Technologie et e´le´ments de typicite´ des rhums des Antilles
franc¸aises. Cahiers Agricultures 5, 83–88.
Ganou-Parfait, B. and Saint-Marc, M.-L. (1984) Comparaison de
la bacteriologie des milieux fermentaires de jus de canne a` sucre
et de me´lasse aux Antilles franc¸aises. (1994) Colloque sur les rhums
traditionnels Guadeloupe – Martinique 118–127.
Ganou-Parfait, B., Parfait. A., Galzy, P. and Fahrasmane, L. (1987)
Bacillus sp. in sugar cane fermentation media. Belgian Journal
Food Chemistry and Biotechnology 42, 192–194.
Ganou-Parfait, B., Fahrasmane, L., Ce´lestine-Myrtil, D., Parfait,
A. and Galzy, P. (1988) Les Micrococcus en technologie rhumie`re
aux Antilles-franc¸aises. Microbiologie-Aliments-Nutrition 6, 273–
277.
Ganou-Parfait, B., Fahrasmane, L. and Parfait, A. (1989) Les bacte´ries ae´robies des milieux fermentaires a` base de jus de canne a`
sucre. Industries Alimentaires et Agricoles 106, 579–585.
Ganou-Parfait, B., Valladon, M. and Parfait, A. (1991) Contribution
a` la bacte´riologie des eaux de fabrication des distilleries de la
Guadeloupe, AFCAS: 1e`re rencontre internationale en langue franc¸aise sur la canne a` sucre, 303–309.
Greg, P. (1895) The Jamaica yeast. Bulletin of Botanical Department
Jamaica 2, 157–160.
Jay, J.M. (1982) Antimicrobial properties of diacetyl. Applied and
Environmental Microbiology 44, 525–532.
Jounela-Eriksson, P. (1978) The aroma composition of distilled
beverages and the perceived aroma of whisky. In Flavor of Foods
© 1998 The Society for Applied Microbiology, Journal of Applied Microbiology 84, 921–928
and Beverages Chemistry and Technology, pp. 339–354. London:
Academic Press.
Jouret, C., Pace, E. and Parfait, A. (1990) L’acide formique composant de l’acidite´ volatile des rhums. Industries Alimentaires et
Agricoles 107, 1239–1241.
Jouret, C., Pace, E. and Parfait, A. (1994) Diffe´renciation analytique
des rhums agricoles et industriels par les alkylpyrazines. Annales
des Falsifications de l’exterise Chimique et toxicologique 87, 926 85–
926 90.
Journal Officiel des Communaute´s europe´ennes (1989) Le´gislation.
Re`glement CEE n 1576/89 N L160/3.
Kayser, E. (1917) Contribution a` l’e´tude des ferments de la fermentation des rhums. Annales des Sciences Agricoles 297–322.
Kervegant, D. (1946) Rhums et eaux-de-vie de canne. Ed. du Golf.
Vannes. Rue Porte-poterne.
Lencrerot, P., Parfait, A. and Jouret, C. (1984) Roˆle des Coryne´bacte´ries dans la production d’acrole´ine (2-prope´nal) dans les
rhums. Industries Alimentaires et Agricoles 101, 763–765.
Lodder, J. (1970) The Yeast. A Taxonomic Study, 2nd edn. NorthHolland Publishing Company.
Magne, J. (1917) Yield of alcohol obtainable in the fermentation of
cane molasses under different conditions of working. Louisiana
Plant 59, 13–14 cited in Kervegant, D. (1946) 80–81.
Merrit, N. (1966) The influence of temperature on some properties
of yeast. Journal of Institute of Brewing 72, 374–383.
Pairault, M.E.A. (1903) Le rhum et sa fabrication. Collection des
grandes cultures coloniales, Gauthier-Villars.
Parfait, A. and Sabin, G. (1975) Les fermentations traditionnelles
des me´lasses et des jus de canne aux Antilles franc¸aises. Industries
Alimentaires et Agricoles 92, 27–34.
Peynaud, D. and Lafon, M. (1951) Pre´sence et signification du
diace´tyle, de l’ace´toı¨ne et du, 2, 3 butane diol dans les euax-devie. Annales des Falsifications et des Fraudes 263–283.
Picard, D. and Torribio, A. (1972) Travaux de laboratoire sur la
de´te´rioration de la canne a` sucre apre`s re´colte. Nouvelles Agronomiques Antilles-Guyane 4, 267–273.
Rocques, X. (1927) Enqueˆte sur les caracte`res spe´cifiques des rhums
des colonies franc¸aises. Annales des Falsifications 15, 71–79, 148–
155, 224–232, 399–403.
Suomalainen, H. (1975) Quelques aspects ge´ne´raux de la composition des boissons alcooliques. Annales de Techonologie agricole
24, 453–467.

Beantwoorden
Kees22
Berichten: 1266
(@kees22)
Noble Member
Deelgenomen: 6 jaar geleden

Ha, mooi zo! Hartstikke bedankt!

Al bij de eerste treffer met Duckduck kreeg ik een mooie pdf met tabellen en dergelijke intact.

Goed werk!!

hihi: jouw bericht stond er ook tussen!!

Beantwoorden
Berichten: 562
(@hillbilly)
Honorable Member
Deelgenomen: 7 jaar geleden

Hi, ik gebruik altijd 4 kg melasse en 3 kg rietsuiker op dezelfde temp 28 graden, kom ik op SG 1120. Na 48 uur heftigheid zit hij op 1020 en is het grote werk wel gedaan. Ik laat hem dan altijd nog een week of 2 staan. Kan de gist goed uitzakken en zakt de SG nog iets naar 1010 of zo. Als hij lang staat kan je vrij schoon hevelen en hou je het gistbed onderin. Dat gistbed gebruik ik altijd meteen weer voor de volgende batch.

 

Succes!

Beantwoorden
Paolo
Berichten: 618
(@paolo)
Honorable Member
Deelgenomen: 6 jaar geleden

Als je dat allemaal moet vertalen ben je wel even bezig ?. Gelukkig bestaat er iets als 2e Pinkerdag ?

Beantwoorden
Berichten: 0
(@Anoniem)
Deelgenomen: 1 seconde geleden

Gvd.wat een lijst in de tijd dat ik die vertaald heb heb ik al 35 liter uit mijn ketel.?

Beantwoorden
Berichten: 579
Topic starter
(@stierke)
Prominent Member
Deelgenomen: 5 jaar geleden

Het zijn de bacterien in de dunderpit die de zuren leveren die veresteren met de alcohol tijden het stoken.

Beantwoorden
Kees22
Berichten: 1266
(@kees22)
Noble Member
Deelgenomen: 6 jaar geleden

Als ik het goed begrijp, wordt de spoeling al bij de gisting toegevoegd.

Ik las een recept waarin de donderput, dus de lang bewaarde en vies gemaakte spoeling, tijdens het schoonstoken bij de verzamelde ruwstook in de ketel gedaan wordt. Dus niet mee vergist. De verse spoeling in de wijn dient dan als extra zuur en voeding.

Beantwoorden
Robbert
Berichten: 9969
(@robbert)
Illustrious Member
Deelgenomen: 6 jaar geleden

Dunder werd vroeger burned ale genoemd . later door diverse vormen van gebruik kreeg het de naam dunder.
De naam Burned ale zegt het eigenlijk al .
Het restant van de vergiste masch dat de warmte van de distillatie heeft gehad .
Restanten waarin nog vezels en ander organisch product is achtergebleven . deze bevatten ongeveer zo een 3% organische zuren o.a : azijnzuur , propaancarbonzuur / boterzuur / verzadigde vetzuren , ethyl acetaat en zwavelzuur .daarnaast bevat de burned ale / Dunder diverse bacteriën en mineralen.
het opnieuw introduceren van de dunder aan de masch zal ph waardes verlagen . De bacteriën zorgt voor een sterke wilde vergisting . en veranderen van smaak.

In begin gebruikte men vrij kleine ketels.
De ketels in die tijd waren 1,30 hoog en ongeveer 80 cm diameter met een koperen hoed .
De inhoud was dus beperkt en daarom werd er achter elkaar door gestook . Rauwe Rum eruit Gestookt , ketel geleegd en meteen weer gevuld met nieuwe batch .
bij het legen bleef de slutch achter en algauw had men in de gaten dat deze burned ale nog stoffen bevatte die invloed had en smaak verbeterde aan de opvolgende stook .
Na een aantal opvolgende stoken 3 tot 5 werd de Slutch / burned ale / dunder weg geschept en begon proces op nieuw .
De meerdere malen gebruikte dunder gaat naar de put .
Blending van deze verschillende runs maakte unieke smaken .
Al gauw werd er gedacht aan ook deze Burned ale / vooraf al in de vergistings bekkens en tonnen toe te voegen . Omgezette stoffen en zuren in de Burned ale bleken beneficiair te zijn in vergisting en ontstond een langere nagisting .
Zo kwamen er verschillende methodes en specialisatie van het produceren van rum en manier van gebruik van burned ale dat steeds meer bekend werd als Dunder .
Ook ging men Schors , twijgen en bladeren van acacia boom , klaver , pruim en bladeren van perzik boom toevoegen aan de dunder die na fermentatie werd toegevoegd aan de nieuw te vergisten sugarcain en molasse.
Eigenlijk Kun je onderscheiden :
Dunder als restant wat na een distillatie over is achtergebleven in Distillatie ketel.(burned ale ) . Na destillatie blijft er vloeistof achter met een bezinksel op bodem ketel . Na vloeistof aftappen / legen van ketel blijft de slutch / drap achter . de Dunder . De ketel word hervult met masch op de nog aanwezige restanten / dunder en Op deze manier stookt men de volgende batch.
Dan is er vergisting van Sugarcain en molasse in gist vat, ton of bekken waaraan een deel dunder is toegevoegd . na fermentatie word deze gefilterd en gedistilleerd .
De dunderpit !
Tegenwoordig een ander begrip dan in de begin jaren .
Tegenwoordig een container met gemengde restafval uit proces van vergisten tot het burned ale.

De dunder put was een gat gegraven ver achter de distilleerderij waar het uiteindelijke rest afval in word gedumpt . Een soort beerput / composteer put. Daar gingen alle resten van vergisting en distillatie in. Hierin vind je ook ongedierte die ervan eten of in verdrinken en ontlasting.
Vroeger werd uit dit eind restant waar ook véél bacteriële infectie en schimmel in zat wel bakken geschept om een gestopte of slechte vergisting mee op gang te krijgen .
Het hergebruik vanuit de dunder pit is inmiddels in bij wet verboden in een aantal Rum producerende Landen i.v.m. toch gevaarlijke bacteriële infecties die naar men zegt bij aanraking o.a. gangreen / koudvuur , yarsinia , dysenterie en cholera besmetting zouden kunnen veroorzaken .
Daarnaast waren er in de oude tijden geen toiletten en was de composteer put ook de plaats waar de emmers met ontlasting werden geleegd of een balk liep waar men overheen zat en hun behoefte deden .

In midden vorige eeuw zijn de grote bedrijven gestopt met dunder te gebruiken .
De dunder werd ontleedt en essentiële stoffen geïsoleerd .
Nu worden additieven geproduceerd met uitsluitend de stoffen bepalend voor type rum. deze worden gebruikt i.p.v. dunder.

Beantwoorden
Kees22
Berichten: 1266
(@kees22)
Noble Member
Deelgenomen: 6 jaar geleden

Interessant verhaal Robbert, en redelijk overzichtelijk!

Vandaag het voorspel voor een serie van Nick Nitro's rum gemaakt: melasse en rietsuiker in (naar schatting) gelijke delen suiker. Vijf liter daarvan met droesem en al in de ketel en volkomen uitgestookt.

De spoeling (ca 2,75 liter) gebruikt om 6 kg melasse op te lossen. Later deze week ga ik daar nog 2,25 kg rietsuiker bij doen, zodat ik in totaal pakweg 28 liter stookwijn krijg.

De spoeling daarvan gaat naar de volgende portie en zal ik verder gebruiken om een donderput te maken met zuurkoolsap, bananenschil en mandarijn. En misschien een stukje Limburgse kaas. Die kan ik dan uiteindelijk bij de verzamelde ruwstoken doen en fijnstoken.

Nick Nitro waarschuwde wel om de donderput zo ver mogelijk verwijderd te houden van alle andere gistingsprocessen.

Beantwoorden
Robbert
Berichten: 9969
(@robbert)
Illustrious Member
Deelgenomen: 6 jaar geleden

zorg in inder geval dat je nieuwe container met dunder onder water slit of klamme doek zit zodat er geen kruisinfecties kunnen ontstaan .
De zuurkoolsap kan fel vergisting verzorgen . zuurkool zou een melkzuure gist toevoegen evenals de kaas . alleen let op het zoutgehalte van de kaas .
Persoonlijk zou ik een geitenkaas eerder nemen vanwege dat .
Hoewel banaan voor de hand ligt vanwege dat rum een eigenlijk aan tropen verbonden drank is word eigenlijk voornamelijk pruimen en ook bladeren van de pruimen bomen gebruikt .

Beantwoorden
Berichten: 579
Topic starter
(@stierke)
Prominent Member
Deelgenomen: 5 jaar geleden

Een deel ingekuild gras levert ook propionzuur en azijnzuur op.

Beantwoorden
Robbert
Berichten: 9969
(@robbert)
Illustrious Member
Deelgenomen: 6 jaar geleden

klopt maar je moet met ingekuild gras voorzichtig zijn . er kunnen diverse gisten en schimmels in zijn ontstaan maar er kunnen ook diverse parasieten inzitten zoals Wormen , flagellaten , amoebe's .
Deze gaan met stook wel dood maar kunnen vervelende gevolgen hebben door het besmetten van gebruikte materialen .

Beantwoorden
Paolo
Berichten: 618
(@paolo)
Honorable Member
Deelgenomen: 6 jaar geleden

Dank je  Robbert, erg interessant stuk. Moet het nog maar een keer lezen om het goed te begrijpen. Ook leuk te lezen hoe ze het vroeger deden. 

Beantwoorden
Berichten: 385
 Ton
(@ton)
Reputable Member
Deelgenomen: 6 jaar geleden

Ben erg benieuwd Stierke

Beantwoorden
Pagina 2 / 2
Deel:

©2024 Powered by Solydee Advies & IT

Login met je gegevens

Je gegevens vergeten?